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Computer-Assisted Structure Verification of
Eudesmane-type Sesquiterpenes using

Generalized Regression Neural Network
(GRNN)

Taye Temitope Alawode*, Kehinde Olukunmi Alawode

Abstract— This work describes procedures utilizing GRNN in the verification of structures of Eudesmane sesquiterpenes from 3C NMR
chemical shift values. In the first procedure, the substituent types on skeletons of 291 Eudesmane sesquiterpenes were coded and used as
input data for the network. The 3C NMR chemical shift values on the skeleton of the compounds were used as output data. After training,
the network was simulated using thirty-four test compounds. Average and standard deviations were used to measure the accuracy of the
predictions of the network. The procedure has a high potential to identify the Eudesmane skeleton as a substructure in the test
compounds. A related procedure utilizing a GRNN trained employing ®C NMR and coded substituents as input and output data
respectively, was able to predict the substituents attached to various sites of the Eudesmane skeleton.

Index Terms— "*C NMR, Eudesmane skeleton, GRNN, Sesquiterpenes, substituents, verification, prediction

1 INTRODUCTION

Organic chemists are constantly faced with the challenge
of either verifying chemical structures or elucidating the

chemical structures of unknowns. Both processes involve
the acquisition and analysis of an array of spectral data and
both processes are known to be amenable to algorithmic solu-
tions. Chemists frequently propose chemical structure(s)
based on sample origin or knowledge of the potential prod-
uct(s) of a particular chemical reaction. With this fore-
knowledge, the approach generally adopted is to acquire and
then examine the spectral data in terms of consistency be-
tween spectroscopic expectations from the proposed structure
and experimental data. This workflow requires experience in
spectral interpretation, experimental access to the necessary
data and, where appropriate, access to software tools for spec-
tral prediction and comparison [1]. Methods for 1D NMR
spectral prediction include rule-based approach for particular
classes of compounds or as a suite of software tools covering
one or more NMR active nuclei. Agreement between the rec-
orded and predicted NMR spectral data is the primary tool
used to identify the most probable structure in a set of sug-
gested structures. Numerous studies devoted to NMR chemi-
cal shift calculation have been reported [2-4].

The structure verification process compares a calculated
chemical shift or spectrum; either 1D or 2D with the corre-
sponding experimental data and the structural hypothesis is
either accepted, rejected, or can be revised on the basis of vis-
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ual inspection or calculated mean or standard deviations [5].
Alternatively, it may be obvious from this analysis that addi-
tional homo- or heteronuclear correlation data must be ac-
quired to verify the structure or to test a revised structure. The
two most widely used procedures for predicting NMR spectra
are the construction of empirical models[6-8] and the applica-
tion of prediction algorithms extracted from data collected
within spectral databases[9-10]. Certain applications use both
approaches simultaneously [11]. Prediction of 3C NMR chem-
ical shifts using artificial neural networks (ANN) has also been
reported[12-15].

In a previous work[16], we have shown that GRNN, an ar-
chitecture of ANN, could identify the substituents on the skel-
eton of Eudesmane compounds when 3C NMR chemical shift
values at the various positions on their skeletons were used as
inputs for the system. (Figs. 1 and 2 shows a single neuron
model and the general structure of GRNN) [17]. In this work,
we show that GRNN can predict the 13C NMR chemical shift
values at the various positions on skeletons of Eudesmane
sesquiterpenes. We also demonstrate how these procedures
may be used as complementary tools for structure verification
and revision of selected Eudesmane sesquiterpenes.

Fig. 1. Single Neuron Model [17]
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Fig. 2. General Structure of GRNN [17]

2 EXPERIMENTAL

For identification purposes and for structural elucidation of
new compounds, it is necessary to have access to extensive list
of their structural data. In the present study, we made use of
structural (skeletal) 3C data, substituents and stereochemical
information of 325 (out of the total 350) eudesmane com-
pounds published by Olievera et al (2000) [18]. This infor-
mation can be extracted from data of eudesmane sesquiter-
penes published in literature by isolating 13C values

of the skeletal (carbon) from those of the substituents. The
compounds left out were those whose substituents were not
stated explicitly due to structural complexity. ANNs work
through learning method, their training must, therefore, be
done with the use of well detailed and correct data to avoid an
erroneous learning process. Of the 325 compounds used, thir-
ty-four (34) were reserved for use as test cases (these were not
used in training the neural network). The structure of the eu-
desmane skeleton with the numbering of each carbon atom is
shown in Fig. 3.

15

14 13

Fig. 3. The Eudesmane Skeleton[18]

Three Excel worksheets containing coded information on
the input and target data for the training and test compounds
were prepared. On the first row of the first sheet, the com-
pounds were assigned codes 1-291. In the first column of the
same sheet, the positions of each carbon atoms on the skeleton
(as shown in Figure 3) were coded as 1-15. In preparing the
input data, each substituent type (on first encounter) was as-
signed 3 number codes. These codes serve to identify the sub-
stituent while also taking into account its possible stereochem-
istry (a or B) in various positions of the skeletons in other
compounds. Carbon positions without substituents were as-
signed a code of 0 while a and p positions without substitu-
ent(s) were assigned codes of 1 and 2 respectively. For exam-
ple, OH group was given a code of 3, an a-OH is given a code
of 4 while a B-OH was assigned a code of 5. The designated

codes for the substituent(s) (on each compound) were as-
signed to their correct position on the skeleton (previously
coded 1-15).

On the second excel sheet, the compounds and the posi-
tions of the carbon atoms on the skeleton are coded as de-
scribed previously. The 3C chemical shift data for each Car-
bon at each of the 15 positions was recorded for each com-
pound. These represent the target data subsequently used in
training of the net. A third excel sheet in the format just de-
scribed was prepared except that it contains the codes for the
substituents on the various positions of the eudesmane skele-
ton of the compounds (coded 1-34). Since Artificial Neural
Networks learn through examples, the test compounds were
selected based on the representativeness of their substitution
patterns in the table of structural information published by
Olievera et al (2000) [18]. This was done largely by visual in-
spection. These represent the input data for the test com-
pounds.

After the construction of the worksheets, the data were
transferred into the Neural Network toolbox of MATLAB
7.8.0. From the command window, the ‘nntool’ command was
used to designate the imported data appropriately as ‘input’
or ‘target’. Generalized Regression Neural Network was used
to train the data at different spread constant values (0.05, 0.5,
1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 60.0,
70.0, 80.0, 90.0 and 100.0). The effectiveness of each training
was assessed by simulation with the test data (not previously
used for training and therefore unknown to the network). The
aim was to ascertain whether the neural network would be
able to predict correctly the 13C NMR chemical shift values on
the various positions of the eudesmane skeleton.

We have described a similar procedure previously that
could identify the substituents on the Eudesmane skeleton
from 13C NMR data. This system utilizes as input 3C NMR
chemical shift values on the skeleton of Eudesmane com-
pounds. The outputs are substituents coded as described
above. In order to demonstrate the use of this procedure in
revision of structures of Eudesmanes, experimental 3C NMR
chemical shift values of 5 compounds (3, 5, 7, 9 and 11) were
used as input to the system. The results are presented in Table
2.

3 RESULTS AND DISCUSSION

The structure of any natural product is conventionally divisi-
ble into three sub-units: (i) the skeletal atoms; (ii) heteroatoms
directly bonded to the skeletal atoms or unsaturations be-
tween them; and (iii) secondary carbon chains, usually bound
to a skeletal atom through an ester or ether linkage [19]. The
procedures adopted in the current work aimed to verify the
structure of Eudesmane sesquiterpenes by first establishing
the presence of the eudesmane skeleton in a test compounds
by comparing the predicted 3C NMR spectral data with the
experimental data. This procedure allows the spectroscopist to
identify from the experimental data 3C NMR values due to
the eudesmane skeleton which are used as input in the second
network to identify the substituents on the skeleton of the
compounds. The test (Exp.) and the predicted (Pred.) 3C NMR
chemical shift data for each of the thirty-four (34) test com-
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Table 1: Expected (Exp.) and Predicted (Pred.) 3C NMR Chemical Shift data for test compounds

1(0 =0.5) 2=(0 =5.0) 3(c=1.0) 4(0=1.0) 5(0=5.0) 6 (0 = 30.0) 7(c =1.0) 8(c =80.0)
SITE Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.
C-1 789 80.4 845 84.6 76.1 76.9 79.0 757 70.7 706 726 722 716 711 75.0 69.2
C-2 26.7 287 234 237 713 710 234 265 713 705 67.7 449 704 705 67.3 538
C-3 452 416 430 423 324 325 26.7 228 309 310 441 321 315 311 411 396
C-4 754 712 825 824 335 330 399 3938 39.2 393 70.2 452 39.8 395 72.1 651
C-5 553 553 574 5438 914 910 885 88.2 87 87.2 91.7 874 876 873 915 907
C-6 69.7 69.8 69.4 70.9 751 75.0 320 363 359 370 69.2 634 36.1 36.0 769 719
C-7 499 499 498 46.2 53.0 525 480 472 437 438 541 50.6 440 437 53.6 53.8
C-8 212 208 238 221 720 725 700 76.7 311 312 773 60.1 313 312 738 840
C-9 410 414 331 307 75.7 76.0 743 76.1 743 741 723 714 738 735 753 725
C-10 348 391 485 48.3 49.0 49.0 490 501 47 472 50.1 481 474 470 50.6 527
C-11 289 28.38 29.6 283 813 815 80.5 817 823 823 84.8 837 82.6 822 84.4 849
C-12 212 213 218 227 241 240 229 244 24 222 26.7 276 19.3 193 300 282
C-13 208 20.7 21.0 203 30.7 309 299 308 30.2 26.3 303 283 201 201 26.7 285
C-14 216 247 178 231 18.7 18.0 16.1 16.9 194 211 255 193 245 242 242 237
C-15 153 149 228 172 133 131 612 61.6 20 240 20.7 258 304 302 61.7 583
Avg. Dev. 1.39 1.71 0.32 1.79 0.94 6.81 0.15 3.54
Std. Dev. 2.16 2.46 0.41 2.64 1.67 8.85 0.18 5.20
Corr. Pts? 11 11 15 10 13 15
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Table 1 (continues): Expected (Exp.) and Predicted (Pred.) 3C NMR Chemical Shift data for test compounds

842

9(c =1.0) 10 (0 =5.0) 11(0 =1.0) 12(0 =1.0) 13 (0 =50.0) 14(0=0.5) 15 (6 =1.0) 16 (0 = 1.0)
SITE Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.
C-1 70.0 69.8 762 743 734 737 753 754 68.4 685 416 442 405 442 414 799
C-2 679 679 70.7 688 240 242 251 252 68.2 682 19.2 200 20.8 20.0 20.1 286
C-3 422 422 317 421 381 383 379 380 419 420 416 454 395 454 445 377
C-4 69.6 69.6 342 698 704 705 705 707 69.6 69.8 719 717 718 717 770 719
C-5 91.2 912 924 934 926 925 921 922 911 911 51.0 57.2 53.0 57.2 485 473
C-6 781 781 755 746 781 782 726 728 717 718 779 694 709 694 205 209
C-7 492 492 65.8 65.0 521 542 532 533 490 491 444 502 498 50.2 417 413
C-8 345 345 198.7 197.1 772 728 781 783 346 345 232 213 267 213 213 206
C-9 69.8 69.3 80.4 797 765 802 703 704 781 784 39.1 435 80.5 435 415 412
C-10 551 549 52.7 531 479 481 524 525 552 553 373 345 394 345 342 387
Cc-11 846 845 841 852 84.1 843 82.7 828 845 846 240 288 28.7 288 746 748
C-12 257 265 256 252 29.7 300 243 244 255 257 223 213 213 213 29.9 297
C-13 294 294 312 293 255 257 295 296 251 252 253 207 204 207 295 297
C-14 251 250 18.6 24.6 237 239 227 228 29.2 293 234 246 29.7 246 218 222
C-15 659 659 61.0 61.1 133 136 60.5 60.7 65.2 65.3 195 213 137 213 184 132
Avg. Dev. 0.13 5.75 0.73 0.04 0.06 3.20 5.83 5.97
Std. Dev. 0.27 9.63 1.63 0.05 0.09 411 10.36 10.70
Corr. Pts? 15 12 15 15 6 9

aNumber of sites where 13C NMR Chemical Shift values are predicted within +2 of experimental value
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Table 1 (continues): Expected (Exp.) and Predicted (Pred.) 3C NMR Chemical Shift data for test compounds

843

17(0 = 5.0) 18(o = 15.0) 19(0 = 0.5) 20(c = 0.5) 21(c = 1.0) 22(c = 0.5) 23(6 =1.0) 24 (0 =1.0) 25(c = 0.05)
SITE Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.
C-1 76.7 378 768 729 374 457 792 772 80.7 79.1 319 320 365 317 815 80.0 78.7 78.7
C-2 321 229 26.7 359 338 688 325 319 28.0 315 251 259 256 231 40.6 407 30.0 30.0
C-3 1212 1241 321 69.9 199 2004 352 351 338 342 734 734 729 739 394 397 39.7 39.7
C-4 1335 1335 1392 1425 1289 1259 1464 1462 1482 148.6 754 721 85.7 818 709 710 71.0 71.0
C-5 50.8 443 136.4 1337 1626 164.2 56.2 55.9 48.7 489 489 49.0 486 48.6 46.8 46.5 47.6 47.6
C-6 714 698 206.8 207.8 28.8 29.0 67.2 67.0 242 248 1432 1436 1401 1409 235 269 26.8 26.8
C-7 493 739 575 582 49.7 498 496 493 476 475 1454 1449 1451 1454 1421 1421 1299 1299
C-8 203 238 217 226 226 225 185 16.2 219 222 201.3 2015 200.3 200 116.1 1162 202.0 202.0
C-9 354 344 37.0 370 420 427 365 36.3 36.6 37.0 57.7 578 576 577 231 232 55.4 55.4
C-10 377 339 43.0 440 359 37.0 418 417 39.1 401 39.2 393 40 391 369 379 40.3 40.3
C-11 286 34.8 258 258 724 724 26.3 26.0 727 725 72 720 717 759 351 351 1464 1464
C-12 222 156 182 178 268 26.7 211 16.2 27.0 27.0 293 294 289 29.2 219 219 23.1 23.1
C-13 20.1 16.3 210 211 275 2717 164 211 272 272 288 289 29.1 2838 213 213 23.8 238
C-14 207 217 20.7 163 109 11.0 1079 107.8 107.2 108.0 224 224 18.7 18.9 29.9 299 25.9 25.9
C-15 122 177 183 184 226 229 11.7 116 112 102 177 178 185 182 129 118 12.7 12.7
Avg. 7.68 5.57 4.96 1.06 0.65 0.48 1.40 0.57 0
Dev.
Std. 12.97 10.17 9.15 1.94 1.10 0.92 211 1.06 0
Dev.
Corr. 12 12 14 14 11 14 15
Ptsa

aNumber of sites where 13C NMR Chemical Shift values are predicted within +2 of experimental value
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Table 1 (continues): Expected (Exp.) and Predicted (Pred.) 3C NMR Chemical Shift data for test compounds
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26 (0=5.0) 27 (0=0.5) 28 (0 =50.0) 29 (0=10.0) 30 (0=5.0) 31(0 =15.0) 32 (0=15.0) 33(0=0.5) 34 (0=1.0)
SITE Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.
C-1 334 364 76.1 753 755 791 429 410 409 409 443 342 378 342 307 312 419 413
C-2 231 256 296 293 278 272 195 225 227 233 753 274 230 273 185 237 26.7 234
C-3 723 747 39.1 365 356 315 436 547 39.7 404 1216 775 1211 774 322 313 378 368
C-4 834 845 659 788 813 577 735 718 79.7 792 139.0 717 1348 717 1434 1446 143 150.3
C-5 456 457 60.6 57.0 56.7 54.9 579 532 473 475 472 496 469 49.6 129 1247 579 437
C-6 26.1 256 66.3 723 717 709 733 261 19.6 19.6 289 237 294 237 329 312 69.3 343
C-7 130.5 130.0 56.3 50.6 50.7 504 50.3 403 394 394 40.1 404 40.1 404 371 384 481 729
C-8 210.7 2017 675 238 252 244 26.8 262 233 230 26.7 26.0 274 260 357 383 239 313
C-9 60.4 59.9 445 408 399 397 426 420 406 40.3 398 442 40.1 442 799 80.1 404 359
C-10 36.0 365 424 417 40.8 406 36.3 345 350 350 352 343 323 343 39.1 394 374 354
C-11 1461 1450 137.7 1442 1437 1441 1423 1452 1466 146.7 1451 1455 1453 1455 1316 1326 1473 146.7
C-12 23.7 233 128.8 1247 1252 1249 1258 1221 1108 1109 1251 1225 1724 1225 1255 1248 1246 167.8
C-13 231 227 1674 1681 1679 1679 1683 167.2 227 228 172.3 167.8 1250 167.8 1708 1708 168.1 1233
C-14 19.3 183 63.7 76.0 748 719 238 220 181 182 21.0 210 211 210 19.8 18.9 106.9 105.1
C-15 183 18.1 129 15.0 153 155 19.7 18.6 18.8 18.9 16.4 184 157 184 19 183 17.6 15.4
Avg. 151 7.14 3.24 6.67 0.18 16.61 18.00 1.42 12.43
Dev.
Std. 2.76 12.97 6.18 12.78 0.29 22.27 26.09 2.10 20.73
Dev.
Corr. 11 15
Ptsa

aNumber of sites where 3C NMR Chemical Shift values are predicted within +2 of experimental value
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Table 2: Expected (Exp.) and Predicted (Pred.) substituents on Eudesmane skeleton
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SITE Compound 3 Compound 5 Compound 7 Compound 9 Compound 11
3C Exp. Pred. 3C Exp. Pred. 3C Exp. Pred. 13C Exp. Pred. 3C Exp. Pred.
Val- Values Val- Val Values
ues ues ues
C-1 76.1 B-OH a-OGly 707 OAc OAc 71.6 B-OAc  PB-OAc 70.0 pB-OBut B-OBut  73.4 a-OBzt a-OBzt
C-2 713 B-OH a-OGly 713 OBzt OBzt 70.4 B-OiBu  a-OBut 67.9 [B-OBut B-OBut  24.0 - -
C-3 324 - - 30.9 - - 315 - - 422 - - 38.1 - -
C-4 335 - - 39.2 - - 39.8 - - 69.6 a-OH a-OH 70.4 B-OH B-OH
C-5 91.4 a -Oxy a-Oxy 87.0 a-Oxy a-Oxy  87.6 a-Oxy a-Oxy 91.2 a-Oxy a-Oxy 92.6 {-Oxy {-Oxy
C-6 75.1 a-OAc a-OAc 359 - - 36.1 - - 781 a-OAc a-OAc 78.1 B -OAc B-OAc
C-7 53.0 - - 437 - - 44.0 - - 492 - - 52.1 - -
C-8 72.0 B-OBzt  a-OBzt 31.1 - - 313 - - 345 - - 77.2 B -OAc B-OH
C-9 75.7 B-OBzt p-OBzt 743 a- a- 73.8 a- a-O- 69.8 a-OBzt a-OFur 765 a-OAc a-OAc
OEpcin  OEpcin OCin trans(3’-
OACc-2-
buteno-
ate)
C-10 490 - - 47.0 - - 47.4 - - 551 - - 47.9 - -
C-11 813 Oxy, a Oxy, a 82.3 Oxy, a Oxy, a 82.6 Oxy, a Oxy, a 846 Oxy, a Oxy, a 84.1 Oxy, p Oxy, p
C-12 241 - - 24.0 - - 19.3 - - 257 - - 29.7 - -
C-13 307 - - 30.2 - - 20.1 - - 294 - - 255 -
C-14 187 ¢ ¢ 194 ¢ ¢ 245 ¢ ¢ 251 B B 23.7 a a
C-15 133 ¢ ¢ 20.0 ¢ ¢ 30.4 ¢ ¢ 659 OAc,p OAc, 13.3 a a
%  Recogni- 80 100 86.67 93.33 93.33
tion
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pounds are presented in Table 1. The spread constant values at
which the best chemical shift prediction for each compound
was obtained is indicated in parenthesis by the compound.
The variation of the generalized error with change in spread
constant is an important parameter to access the efficacy of
any GRNN. A network that gives a constant error for a broad
range of spread constant is considered better since designers
can choose from a wide range of spread constant values for
their network. In the current work, best results were generally
obtained at spread constant values of between 0.5 and 5.0
(with few exceptions in compounds 13, 18, 25, 28 and 32). Er-
rors in measurements (estimated as average/ standard devia-
tion) generally increased below or above these values.

Since often not the absolute deviation in predicting 13C
NMR chemical shifts are important, but the individual incor-
rect predictions at each carbon site on the skeleton (resulting
in the average/standard deviations observed), we count the
number of correct assignments. A predicted value was
deemed correct if it falls within £2 range from experimentally
determined values. Employing this criterion, of the total of 34
compounds, the chemical shift values for all the 15 sites were
correctly predicted in eight(8) compounds, 14 were predicted
correctly in three(3) compounds and 13, 12, 11 and 10 in
one(1), four (4), five (5) and one (1) respectively. This repre-
sents 64.7% of the total number of test compounds. Deviations
and/or incorrect predictions of chemical shift values (within
the limit of £2) at carbon sites within the test compounds may
be due to insufficient representation of the substitution pat-
terns at these sites among the compounds used for training the
network. The quality of prediction could improve significantly
with larger size of training data as a correlation likely exists
between the size of training data and the substitution patterns
observed on the skeleton.

A high-quality reference library containing both structures
and complete spectra or substructures and subspectra being
representative of the types of compounds encountered in the
laboratory, is an invaluable component for a CASE system
[20]. The premise implicit in the spectrum interpretation is
that if the spectrum of the unknown and a reference library
spectrum have a subspectrum in common, then the corre-
sponding reference substructure is also present in the un-
known. This implies that where a match (within a limit of £2
for each Carbon site on the Eudesmane skeleton, in this case)
is obtained between the predicted 3C NMR chemical shift
values and the experimental value for the compound whose
structure is to be verified, the Eudesmane skeleton must be
present as a substructure within the compound.

Where the quality of prediction is excellent, for example,
compounds 3, 5, 7,9, 11, 12, 13, 21, 22 and 25, it could be ob-
served that predicted values are sufficiently accurate to identi-
fy the 13C chemical shift values due to the various positions
(sites-C;-Ci5) on the Eudesmane skeleton from the experi-
mental data. Therefore, it is possible to isolate, from experi-
mental data, 3C NMR chemical shift values belonging to the
skeleton.

On the other hand, when skeletal data of Eudesmane com-
pounds are used as input in a second network system previ-
ously described[16] the actual substituents attached to the var-

ious positions on the Eudesmane skeleton are generated. This
may be a viable tool in the revision of structures of previously
isolated Eudesmane compounds, especially when there are
doubts on the nature of substituents on the skeleton. For ex-
ample, when the 13C NMR chemical shift values of compounds
3,5, 7, 9 and 11 were supplied as inputs to the second net-
work, the results presented in Table 2 were obtained. The per-
centage recognition of each compound was taken as the num-
ber of correctly predicted substituents relative to the total
number of sites.

4 CONCLUSION

Neural networks learn from examples and acquire their
‘knowledge’ by induction. They can generalize, provide flexi-
ble non-linear models of input/output relationships can cope
with noisy data and are fault-tolerant [21]. This study shows
that GRNN has the potential for use for verification of struc-
tures of organic compounds.
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