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Computer-Assisted Structure Verification of
Eudesmane-type Sesquiterpenes using

 Generalized Regression Neural Network
(GRNN)

Taye Temitope Alawode*, Kehinde Olukunmi Alawode

Abstract— This work describes procedures utilizing GRNN in the verification of structures of Eudesmane sesquiterpenes from 13C NMR
chemical shift values. In the first procedure, the substituent types on skeletons of 291 Eudesmane sesquiterpenes were coded and used as
input data for the network. The 13C NMR chemical shift values on the skeleton of the compounds were used as output data. After training,
the network was simulated using thirty-four test compounds. Average and standard deviations were used to measure the accuracy of the
predictions of the network. The procedure has a high potential to identify the Eudesmane skeleton as a substructure in the test
compounds.  A related procedure utilizing a GRNN trained employing 13C NMR and coded substituents as input and output data
respectively, was able to predict the substituents attached to various sites of the Eudesmane skeleton.

Index Terms— 13C NMR, Eudesmane skeleton, GRNN, Sesquiterpenes, substituents, verification, prediction

—————————— ——————————

1  INTRODUCTION
rganic chemists are constantly faced with the challenge
of either verifying chemical structures or elucidating the
chemical structures of unknowns. Both processes involve

the acquisition and analysis of an array of spectral data and
both processes are known to be amenable to algorithmic solu-
tions. Chemists frequently propose chemical structure(s)
based on sample origin or knowledge of the potential prod-
uct(s) of a particular chemical reaction. With this fore-
knowledge, the approach generally adopted is to acquire and
then examine the spectral data in terms of consistency be-
tween spectroscopic expectations from the proposed structure
and experimental data. This workflow requires experience in
spectral interpretation, experimental access to the necessary
data and, where appropriate, access to software tools for spec-
tral prediction and comparison [1]. Methods for 1D NMR
spectral prediction include rule-based approach for particular
classes of compounds or as a suite of software tools covering
one or more NMR active nuclei. Agreement between the rec-
orded and predicted NMR spectral data is the primary tool
used  to  identify  the  most  probable  structure  in  a  set  of  sug-
gested structures. Numerous studies devoted to NMR chemi-
cal shift calculation have been reported [2-4].

The structure verification process compares a calculated
chemical  shift  or  spectrum;  either  1D  or  2D  with  the  corre-
sponding experimental data and the structural hypothesis is
either accepted, rejected, or can be revised on the basis of vis-

ual inspection or calculated mean or standard deviations [5].
Alternatively, it may be obvious from this analysis that addi-
tional homo- or heteronuclear correlation data must be ac-
quired to verify the structure or to test a revised structure. The
two most widely used procedures for predicting NMR spectra
are the construction of empirical models[6-8] and the applica-
tion of prediction algorithms extracted from data collected
within spectral databases[9-10]. Certain applications use both
approaches simultaneously [11]. Prediction of 13C NMR chem-
ical shifts using artificial neural networks (ANN) has also been
reported[12-15].

In a previous work[16], we have shown that GRNN, an ar-
chitecture of ANN, could identify the substituents on the skel-
eton of Eudesmane compounds when 13C NMR chemical shift
values at the various positions on their skeletons were used as
inputs  for  the  system.  (Figs.  1  and  2  shows  a  single  neuron
model and the general structure of GRNN) [17]. In this work,
we show that GRNN can predict the 13C NMR chemical shift
values  at  the  various  positions  on  skeletons  of  Eudesmane
sesquiterpenes. We also demonstrate how these procedures
may be used as complementary tools for structure verification
and revision of selected Eudesmane sesquiterpenes.

Fig. 1. Single Neuron Model [17]
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Fig. 2.  General Structure of GRNN [17]

2 EXPERIMENTAL
For identification purposes and for structural elucidation of
new compounds, it is necessary to have access to extensive list
of their structural data. In the present study, we made use of
structural (skeletal) 13C data, substituents and stereochemical
information of 325 (out of the total 350) eudesmane com-
pounds published by Olievera et al (2000) [18]. This infor-
mation can be extracted from data of eudesmane sesquiter-
penes published in literature by isolating 13C values
of  the  skeletal  (carbon)  from  those  of  the  substituents.  The
compounds  left  out  were  those  whose  substituents  were  not
stated explicitly due to structural complexity. ANNs work
through learning method, their training must, therefore, be
done with the use of well detailed and correct data to avoid an
erroneous learning process. Of the 325 compounds used, thir-
ty-four (34) were reserved for use as test cases (these were not
used in training the neural  network).  The structure of  the eu-
desmane skeleton with the numbering of each carbon atom is
shown in Fig. 3.

Fig. 3. The Eudesmane Skeleton[18]

Three Excel worksheets containing coded information on
the input and target data for the training and test compounds
were  prepared.  On  the  first  row  of  the  first  sheet,  the  com-
pounds were assigned codes 1-291.  In the first  column of  the
same sheet, the positions of each carbon atoms on the skeleton
(as shown in Figure 3) were coded as 1-15. In preparing the
input data, each substituent type (on first encounter) was as-
signed 3 number codes. These codes serve to identify the sub-
stituent while also taking into account its possible stereochem-
istry (  or ) in various positions of the skeletons in other
compounds. Carbon positions without substituents were as-
signed a code of 0 while  and  positions without substitu-
ent(s) were assigned codes of 1 and 2 respectively. For exam-
ple, OH group was given a code of 3, an -OH is given a code
of  4  while  a  -OH  was  assigned  a  code  of  5.  The  designated

codes  for  the  substituent(s)  (on  each  compound)  were  as-
signed to their correct position on the skeleton (previously
coded 1-15).

On the second excel sheet, the compounds and the posi-
tions  of  the  carbon  atoms  on  the  skeleton  are  coded  as  de-
scribed previously. The 13C  chemical  shift  data  for  each  Car-
bon  at  each  of  the  15  positions  was  recorded  for  each  com-
pound. These represent the target data subsequently used in
training of the net. A  third  excel  sheet  in  the  format  just  de-
scribed was prepared except that it contains the codes for the
substituents on the various positions of the eudesmane skele-
ton of the compounds (coded 1-34). Since Artificial Neural
Networks learn through examples, the test compounds were
selected based on the representativeness of their substitution
patterns in the table of structural information published by
Olievera et al (2000) [18]. This was done largely by visual in-
spection. These represent the input data for the test com-
pounds.

After the construction of the worksheets, the data were
transferred into the Neural Network toolbox of MATLAB
7.8.0. From the command window, the ‘nntool’ command was
used to designate the imported data appropriately as ‘input’
or ‘target’. Generalized Regression Neural Network was used
to train the data at different spread constant values (0.05, 0.5,
1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 60.0,
70.0, 80.0, 90.0 and 100.0). The effectiveness of each training
was assessed by simulation with the test data (not previously
used for training and therefore unknown to the network). The
aim  was  to  ascertain  whether  the  neural  network  would  be
able to predict correctly the 13C NMR chemical shift values on
the various positions of the eudesmane skeleton.

We have described a similar procedure previously that
could identify the substituents on the Eudesmane skeleton
from 13C  NMR  data.  This  system  utilizes  as  input 13C NMR
chemical shift values on the skeleton of Eudesmane com-
pounds. The outputs are substituents coded as described
above.  In  order  to  demonstrate  the  use  of  this  procedure  in
revision of structures of Eudesmanes, experimental 13C NMR
chemical shift values of 5 compounds (3, 5, 7, 9 and 11) were
used as input to the system. The results are presented in Table
2.

3 RESULTS AND DISCUSSION
The structure of any natural product is conventionally divisi-
ble into three sub-units: (i) the skeletal atoms; (ii) heteroatoms
directly  bonded  to  the  skeletal  atoms  or  unsaturations  be-
tween them; and (iii) secondary carbon chains, usually bound
to a skeletal atom through an ester or ether linkage [19]. The
procedures adopted in the current work aimed to verify the
structure of Eudesmane sesquiterpenes by first establishing
the presence of the eudesmane skeleton in a test compounds
by comparing the predicted 13C NMR spectral data with the
experimental data. This procedure allows the spectroscopist to
identify from the experimental data 13C  NMR  values  due  to
the eudesmane skeleton which are used as input in the second
network to identify the substituents on the skeleton of the
compounds. The test (Exp.) and the predicted (Pred.) 13C NMR
chemical shift data for each of the thirty-four (34) test com-
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Table 1: Expected (Exp.) and Predicted (Pred.) 13C NMR Chemical Shift data for test compounds

aNumber of sites where 13C NMR Chemical Shift values are predicted within ±2 of experimental value

  1(  =0.5)   2=(  =5.0)  3(  = 1.0)   4(  = 1.0)   5 (  = 5.0)  6 (  = 30.0)    7(  = 1.0)   8(  =80.0)
SITE Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.

C-1 78.9 80.4 84.5 84.6 76.1 76.9 79.0 75.7 70.7 70.6 72.6 72.2 71.6 71.1 75.0 69.2
C-2 26.7 28.7 23.4 23.7 71.3 71.0 23.4 26.5 71.3 70.5 67.7 44.9 70.4 70.5 67.3 53.8
C-3 45.2 41.6 43.0 42.3 32.4 32.5 26.7 22.8 30.9 31.0 44.1 32.1 31.5 31.1 41.1 39.6
C-4 75.4 71.2 82.5 82.4 33.5 33.0 39.9 39.8 39.2 39.3 70.2 45.2 39.8 39.5 72.1 65.1
C-5 55.3 55.3 57.4 54.8 91.4 91.0 88.5 88.2 87 87.2 91.7 87.4 87.6 87.3 91.5 90.7
C-6 69.7 69.8 69.4 70.9 75.1 75.0 32.0 36.3 35.9 37.0 69.2 63.4 36.1 36.0 76.9 71.9
C-7 49.9 49.9 49.8 46.2 53.0 52.5 48.0 47.2 43.7 43.8 54.1 50.6 44.0 43.7 53.6 53.8
C-8 21.2 20.8 23.8 22.1 72.0 72.5 70.0 76.7 31.1 31.2 77.3 60.1 31.3 31.2 73.8 84.0
C-9 41.0 41.4 33.1 30.7 75.7 76.0 74.3 76.1 74.3 74.1 72.3 71.4 73.8 73.5 75.3 72.5
C-10 34.8 39.1 48.5 48.3 49.0 49.0 49.0 50.1 47 47.2 50.1 48.1 47.4 47.0 50.6 52.7
C-11 28.9 28.8 29.6 28.3 81.3 81.5 80.5 81.7 82.3 82.3 84.8 83.7 82.6 82.2 84.4 84.9
C-12 21.2 21.3 21.8 22.7 24.1 24.0 22.9 24.4 24 22.2 26.7 27.6 19.3 19.3 30.0 28.2
C-13 20.8 20.7 21.0 20.3 30.7 30.9 29.9 30.8 30.2 26.3 30.3 28.3 20.1 20.1 26.7 28.5
C-14 21.6 24.7 17.8 23.1 18.7 18.0 16.1 16.9 19.4 21.1 25.5 19.3 24.5 24.2 24.2 23.7
C-15 15.3 14.9 22.8 17.2 13.3 13.1 61.2 61.6 20 24.0 20.7 25.8 30.4 30.2 61.7 58.3
Avg. Dev.        1.39        1.71        0.32      1.79        0.94        6.81          0.15        3.54
Std. Dev.        2.16        2.46        0.41      2.64        1.67        8.85          0.18        5.20
Corr. Ptsa         11         11         15       10        13         6           15          8
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Table 1 (continues): Expected (Exp.) and Predicted (Pred.) 13C NMR Chemical Shift data for test compounds
  9(  =1.0) 10 (  =5.0)   11(  =1.0)    12(  =1.0) 13 (  = 50.0) 14( = 0.5)  15 (  = 1.0)     16 (  = 1.0)

SITE Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.
C-1 70.0 69.8 76.2 74.3 73.4 73.7 75.3 75.4 68.4 68.5 41.6 44.2 40.5 44.2 41.4 79.9
C-2 67.9 67.9 70.7 68.8 24.0 24.2 25.1 25.2 68.2 68.2 19.2 20.0 20.8 20.0 20.1 28.6
C-3 42.2 42.2 31.7 42.1 38.1 38.3 37.9 38.0 41.9 42.0 41.6 45.4 39.5 45.4 44.5 37.7
C-4 69.6 69.6 34.2 69.8 70.4 70.5 70.5 70.7 69.6 69.8 71.9 71.7 71.8 71.7 77.0 71.9
C-5 91.2 91.2 92.4 93.4 92.6 92.5 92.1 92.2 91.1 91.1 51.0 57.2 53.0 57.2 48.5 47.3
C-6 78.1 78.1 75.5 74.6 78.1 78.2 72.6 72.8 71.7 71.8 77.9 69.4 70.9 69.4 20.5 20.9
C-7 49.2 49.2 65.8 65.0 52.1 54.2 53.2 53.3 49.0 49.1 44.4 50.2 49.8 50.2 41.7 41.3
C-8 34.5 34.5 198.7 197.1 77.2 72.8 78.1 78.3 34.6 34.5 23.2 21.3 26.7 21.3 21.3 20.6
C-9 69.8 69.3 80.4 79.7 76.5 80.2 70.3 70.4 78.1 78.4 39.1 43.5 80.5 43.5 41.5 41.2
C-10 55.1 54.9 52.7 53.1 47.9 48.1 52.4 52.5 55.2 55.3 37.3 34.5 39.4 34.5 34.2 38.7
C-11 84.6 84.5 84.1 85.2 84.1 84.3 82.7 82.8 84.5 84.6 24.0 28.8 28.7 28.8 74.6 74.8
C-12 25.7 26.5 25.6 25.2 29.7 30.0 24.3 24.4 25.5 25.7 22.3 21.3 21.3 21.3 29.9 29.7
C-13 29.4 29.4 31.2 29.3 25.5 25.7 29.5 29.6 25.1 25.2 25.3 20.7 20.4 20.7 29.5 29.7
C-14 25.1 25.0 18.6 24.6 23.7 23.9 22.7 22.8 29.2 29.3 23.4 24.6 29.7 24.6 21.8 22.2
C-15 65.9 65.9 61.0 61.1 13.3 13.6 60.5 60.7 65.2 65.3 19.5 21.3 13.7 21.3 18.4 13.2
Avg. Dev.        0.13         5.75         0.73         0.04         0.06 3.20       5.83        5.97
Std. Dev.        0.27         9.63         1.63         0.05         0.09 4.11      10.36       10.70
Corr. Ptsa         15          12          15          15          15           6          7         9

aNumber of sites where 13C NMR Chemical Shift values are predicted within ±2 of experimental value
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Table 1 (continues): Expected (Exp.) and Predicted (Pred.) 13C NMR Chemical Shift data for test compounds
  17(  = 5.0)  18(  = 15.0)   19(  = 0.5)    20(  = 0.5)    21(  = 1.0)    22(  = 0.5)   23(  = 1.0)    24 (  = 1.0)     25(  = 0.05)

SITE Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.
C-1 76.7 37.8 76.8 72.9 37.4 45.7 79.2 77.2 80.7 79.1 31.9 32.0 36.5 31.7 81.5 80.0 78.7 78.7
C-2 32.1 22.9 26.7 35.9 33.8 68.8 32.5 31.9 28.0 31.5 25.1 25.9 25.6 23.1 40.6 40.7 30.0 30.0
C-3 121.2 124.1 32.1 69.9 199 200.4 35.2 35.1 33.8 34.2 73.4 73.4 72.9 73.9 39.4 39.7 39.7 39.7
C-4 133.5 133.5 139.2 142.5 128.9 125.9 146.4 146.2 148.2 148.6 75.4 72.1 85.7 81.8 70.9 71.0 71.0 71.0
C-5 50.8 44.3 136.4 133.7 162.6 164.2 56.2 55.9 48.7 48.9 48.9 49.0 48.6 48.6 46.8 46.5 47.6 47.6
C-6 71.4 69.8 206.8 207.8 28.8 29.0 67.2 67.0 24.2 24.8 143.2 143.6 140.1 140.9 23.5 26.9 26.8 26.8
C-7 49.3 73.9 57.5 58.2 49.7 49.8 49.6 49.3 47.6 47.5 145.4 144.9 145.1 145.4 142.1 142.1 129.9 129.9
C-8 20.3 23.8 21.7 22.6 22.6 22.5 18.5 16.2 21.9 22.2 201.3 201.5 200.3 200 116.1 116.2 202.0 202.0
C-9 35.4 34.4 37.0 37.0 42.0 42.7 36.5 36.3 36.6 37.0 57.7 57.8 57.6 57.7 23.1 23.2 55.4 55.4
C-10 37.7 33.9 43.0 44.0 35.9 37.0 41.8 41.7 39.1 40.1 39.2 39.3 40 39.1 36.9 37.9 40.3 40.3
C-11 28.6 34.8 25.8 25.8 72.4 72.4 26.3 26.0 72.7 72.5 72 72.0 71.7 75.9 35.1 35.1 146.4 146.4
C-12 22.2 15.6 18.2 17.8 26.8 26.7 21.1 16.2 27.0 27.0 29.3 29.4 28.9 29.2 21.9 21.9 23.1 23.1
C-13 20.1 16.3 21.0 21.1 27.5 27.7 16.4 21.1 27.2 27.2 28.8 28.9 29.1 28.8 21.3 21.3 23.8 23.8
C-14 20.7 21.7 20.7 16.3 10.9 11.0 107.9 107.8 107.2 108.0 22.4 22.4 18.7 18.9 29.9 29.9 25.9 25.9
C-15 12.2 17.7 18.3 18.4 22.6 22.9 11.7 11.6 11.2 10.2 17.7 17.8 18.5 18.2 12.9 11.8 12.7 12.7
Avg.
Dev.

7.68 5.57 4.96 1.06 0.65 0.48 1.40 0.57 0

Std.
Dev.

12.97 10.17 9.15 1.94 1.10 0.92 2.11 1.06 0

Corr.
Ptsa

          4 9          12 12 14 14 11 14 15

aNumber of sites where 13C NMR Chemical Shift values are predicted within ±2 of experimental value
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Table 1 (continues): Expected (Exp.) and Predicted (Pred.) 13C NMR Chemical Shift data for test compounds
 26 (  = 5.0)   27 (  = 0.5)  28 (  = 50.0)  29 ( =10.0)   30 (  = 5.0)  31(  = 15.0) 32 (  = 15.0) 33 (  = 0.5) 34 (  = 1.0)

SITE Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.
C-1 33.4 36.4 76.1 75.3 75.5 79.1 42.9 41.0 40.9 40.9 44.3 34.2 37.8 34.2 30.7 31.2 41.9 41.3
C-2 23.1 25.6 29.6 29.3 27.8 27.2 19.5 22.5 22.7 23.3 75.3 27.4 23.0 27.3 18.5 23.7 26.7 23.4
C-3 72.3 74.7 39.1 36.5 35.6 31.5 43.6 54.7 39.7 40.4 121.6 77.5 121.1 77.4 32.2 31.3 37.8 36.8
C-4 83.4 84.5 65.9 78.8 81.3 57.7 73.5 71.8 79.7 79.2 139.0 71.7 134.8 71.7 143.4 144.6 143 150.3
C-5 45.6 45.7 60.6 57.0 56.7 54.9 57.9 53.2 47.3 47.5 47.2 49.6 46.9 49.6 129 124.7 57.9 43.7
C-6 26.1 25.6 66.3 72.3 71.7 70.9 73.3 26.1 19.6 19.6 28.9 23.7 29.4 23.7 32.9 31.2 69.3 34.3
C-7 130.5 130.0 56.3 50.6 50.7 50.4 50.3 40.3 39.4 39.4 40.1 40.4 40.1 40.4 37.1 38.4 48.1 72.9
C-8 210.7 201.7 67.5 23.8 25.2 24.4 26.8 26.2 23.3 23.0 26.7 26.0 27.4 26.0 35.7 38.3 23.9 31.3
C-9 60.4 59.9 44.5 40.8 39.9 39.7 42.6 42.0 40.6 40.3 39.8 44.2 40.1 44.2 79.9 80.1 40.4 35.9
C-10 36.0 36.5 42.4 41.7 40.8 40.6 36.3 34.5 35.0 35.0 35.2 34.3 32.3 34.3 39.1 39.4 37.4 35.4
C-11 146.1 145.0 137.7 144.2 143.7 144.1 142.3 145.2 146.6 146.7 145.1 145.5 145.3 145.5 131.6 132.6 147.3 146.7
C-12 23.7 23.3 128.8 124.7 125.2 124.9 125.8 122.1 110.8 110.9 125.1 122.5 172.4 122.5 125.5 124.8 124.6 167.8
C-13 23.1 22.7 167.4 168.1 167.9 167.9 168.3 167.2 22.7 22.8 172.3 167.8 125.0 167.8 170.8 170.8 168.1 123.3
C-14 19.3 18.3 63.7 76.0 74.8 71.9 23.8 22.0 18.1 18.2 21.0 21.0 21.1 21.0 19.8 18.9 106.9 105.1
C-15 18.3 18.1 12.9 15.0 15.3 15.5 19.7 18.6 18.8 18.9 16.4 18.4 15.7 18.4 19 18.3 17.6 15.4
Avg.
Dev.

1.51 7.14 3.24 6.67 0.18 16.61 18.00 1.42 12.43

Std.
Dev.

2.76 12.97 6.18 12.78 0.29 22.27 26.09 2.10 20.73

Corr.
Ptsa

11 4 11 8 15 6 5 12 5

aNumber of sites where 13C NMR Chemical Shift values are predicted within ±2 of experimental value
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Table 2: Expected (Exp.) and Predicted (Pred.) substituents on Eudesmane skeleton

SITE Compound 3 Compound 5  Compound 7 Compound 9 Compound 11
13C
Val-
ues

Exp. Pred. 13C
Values

Exp. Pred. 13C
Val-
ues

Exp. Pred. 13C
Val
ues

Exp. Pred. 13C
Values

Exp. Pred.

C-1 76.1 -OH -OGly 70.7 OAc OAc 71.6  -OAc  –OAc 70.0 -OBut -OBut 73.4 -OBzt -OBzt

C-2 71.3 -OH -OGly 71.3 OBzt OBzt 70.4 -OiBu -OBut 67.9 -OBut -OBut 24.0 - -

C-3 32.4 - - 30.9 - - 31.5 - - 42.2 - - 38.1 - -
C-4 33.5 - - 39.2 - - 39.8 - - 69.6 -OH -OH 70.4 -OH -OH
C-5 91.4  -Oxy  –Oxy 87.0 -Oxy -Oxy 87.6 -Oxy -Oxy 91.2 -Oxy -Oxy 92.6 -Oxy -Oxy
C-6 75.1 -OAc -OAc 35.9 - - 36.1 - - 78.1 -OAc -OAc 78.1  -OAc -OAc
C-7 53.0 - - 43.7 - - 44.0 - - 49.2 - - 52.1 - -
C-8 72.0 -OBzt  -OBzt 31.1 - - 31.3 - - 34.5 - - 77.2  -OAc -OH
C-9 75.7 -OBzt -OBzt 74.3 -

OEpcin
-

OEpcin
73.8 -

OCin
-O-

trans(3’-
OAc-2-
buteno-
ate)

69.8 -OBzt -OFur 76.5 -OAc -OAc

C-10 49.0 - - 47.0 - - 47.4 - - 55.1 - - 47.9 - -
C-11 81.3 Oxy, Oxy,  82.3 Oxy,  Oxy,  82.6 Oxy,  Oxy, 84.6 Oxy, Oxy, 84.1 Oxy, Oxy, 
C-12 24.1 - - 24.0 - - 19.3 - - 25.7 - - 29.7 - -
C-13 30.7 - - 30.2 - - 20.1 - - 29.4 - - 25.5 - -
C-14 18.7 19.4 24.5 25.1 23.7
C-15 13.3 20.0 30.4 65.9 OAc, OAc,  13.3
% Recogni-
tion

80 100 86.67 93.33 93.33
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pounds are presented in Table 1. The spread constant values at
which  the  best  chemical  shift  prediction  for  each  compound
was obtained is indicated in parenthesis by the compound.
The variation of the generalized error with change in spread
constant is an important parameter to access the efficacy of
any GRNN. A network that gives a constant error for a broad
range of spread constant is considered better since designers
can choose from a wide range of spread constant values for
their network. In the current work, best results were generally
obtained at spread constant values of between 0.5 and 5.0
(with few exceptions in compounds 13, 18, 25, 28 and 32). Er-
rors in measurements (estimated as average/ standard devia-
tion) generally increased below or above these values.

Since often not the absolute deviation in predicting 13C
NMR chemical shifts are important, but the individual incor-
rect predictions at each carbon site on the skeleton (resulting
in the average/standard deviations observed), we count the
number of correct assignments. A predicted value was
deemed correct if it falls within ±2 range from experimentally
determined values. Employing this criterion, of the total of 34
compounds, the chemical shift values for all the 15 sites were
correctly predicted in eight(8) compounds, 14 were predicted
correctly in three(3) compounds and 13, 12, 11 and 10 in
one(1), four (4), five (5)  and one (1) respectively. This repre-
sents 64.7% of the total number of test compounds.  Deviations
and/or incorrect predictions of chemical shift values (within
the limit of ±2) at carbon sites within the test compounds may
be due to insufficient representation of the substitution pat-
terns at these sites among the compounds used for training the
network. The quality of prediction could improve significantly
with larger size of training data as a correlation likely exists
between the size of training data and the substitution patterns
observed on the skeleton.

A high-quality reference library containing both structures
and complete spectra or substructures and subspectra being
representative of the types of compounds encountered in the
laboratory, is an invaluable component for a CASE system
[20]. The premise implicit in the spectrum interpretation is
that if the spectrum of the unknown and a reference library
spectrum have a subspectrum in common, then the corre-
sponding reference substructure is also present in the un-
known. This implies that where a match (within a limit of ±2
for each Carbon site on the Eudesmane skeleton, in this case)
is obtained between the predicted 13C NMR chemical shift
values and the experimental value for the compound whose
structure is to be verified, the Eudesmane skeleton must be
present as a substructure within the compound.

Where the quality of prediction is excellent, for example,
compounds 3, 5, 7, 9, 11, 12, 13, 21, 22 and 25, it could be ob-
served that predicted values are sufficiently accurate to identi-
fy the 13C  chemical  shift  values  due  to  the  various  positions
(sites-C1-C15) on the Eudesmane skeleton from the experi-
mental data. Therefore, it is possible to isolate, from experi-
mental data, 13C NMR chemical shift values belonging to the
skeleton.

On the other hand, when skeletal data of Eudesmane com-
pounds are used as input in a second network system previ-
ously described[16] the actual substituents attached to the var-

ious positions on the Eudesmane skeleton are generated. This
may be a viable tool in the revision of structures of previously
isolated Eudesmane compounds, especially when there are
doubts on the nature of substituents on the skeleton. For ex-
ample, when the 13C NMR chemical shift values of compounds
3, 5, 7, 9 and 11 were supplied as inputs to the second net-
work, the results presented in Table 2 were obtained. The per-
centage recognition of each compound was taken as the num-
ber of correctly predicted substituents relative to the total
number of sites.

4  CONCLUSION
Neural networks learn from examples and acquire their
‘knowledge’ by induction. They can generalize, provide flexi-
ble non-linear models of input/output relationships can cope
with noisy data and are fault-tolerant [21]. This study shows
that GRNN has the potential for use for verification of struc-
tures of organic compounds.

REFERENCES
[1]  Elyashberg, M. E.; Williams, A. J.; Martin, G. E.; 2008. Computer-

assisted structure verification and elucidation tools in NMR-based
structure elucidation. Progress in Nuclear Magnetic Resonance Spec-
troscopy; 53, pp 1–104.

[2] Quin, L. D.; Williams, A. J.; 2004. Practical Interpretation of P-31 NMR.
Spectra and Computer Assisted Structure Verification, 1st Ed.;  Ad-
vanced Chemistry Development, Inc., Toronto.

[3] Meiler, J.; Meusinger, R; Will, M.; 2000. Fast determination of 13C
NMR chemical shifts using artificial neural networks. J. Chem. Inf.
Comput. Sci.; 40, pp 1169-1176.

[4]  Meiler,  J.;  Maier,  M.;  Will,  M.;  Meusinger,  M.  J.;  2002.   Using  Neural
networks for 13C NMR chemical shift prediction-comparison with tra-
ditional methods. Magn. Reson.; 157, pp242-252.

 [5] Furst, A.; Pretsch, E.; 1990. A computer program  for the prediction of
13C  NMR  chemical  shifts  of  organic  compounds,   Anal.  Chim.  Acta;
229,pp.17-25.

[6] Clerc, J. T.; Sommerauer, H. A. ; 1977. A Minicomputer program based
on Additivity Rules for the estimation of 13C NMR Chemical shift.
Anal. Chim. Acta; 95, pp 33-40.

[7] Jensen, K. L.; Barber, A. S.; Small, G. W.; 1991. Simulation of carbon-13
nuclear magnetic spectra of polycyclic aromatic compounds. Anal.
Chem.;  63(11), pp 1082-1090.

[8] Clouser, D. L.; Jurs, P. C.; 1994. Simulation of 13C Nuclear Magnetic
Resonance Spectra of Tetrahydropyrans Using Regression Analysis
and Neural Networks. Anal. Chim. Acta; 295, pp 221-231.

[9] Bremser, W.; 1985. Expectation ranges of 13C NMR chemical shifts.
Magn. Reson. Chem., 23, pp 271–275.

[10] Kalchhauser, H.; Robien, W.; 1985. CSEARCH: A Computer program
for identification of organic compounds and fully-automated assign-
ment of carbon-13 nuclear magnetic resonance spectra. J. Chem. Inf.
Comput. Sci.; 25, pp 103-108.

[11] Fürst, A.; Pretsch, E.; Robien, W.; 1990. Comprehensive parameter set
for  the  prediction  of  the 13C-NMR chemical shifts of sp3-hybridized
carbon atoms in organic compounds. Anal Chim Acta.;233, pp 213–
222.
[12] Kvasnicka, V.; 1991. An application of neural networks in Chemis-
try- prediction of c-13 nmr chemical shifts.  J.  Math. Chem.; 6, pp 63-

846

IJSER



International Journal of Scientific & Engineering Research Volume 5, Issue 12, December-2014
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

76.
[13] Ivanciuc, O.; Rabine, J. -P; Cabrol-Bass, D.; Panaye, A.; Doucet, J. P.;

1996. 13C NMR chemical shift prediction of sp2 carbon atoms in acy-
clic alkenes using neural networks. J. Chem. Inf. Comput. Sci.; 36, pp
644-653.

[14] Ivanciuc, O.; Rabine, J. –P.; Cabrol-Bass, D.; Panaye, A.; Doucet, J. P.;
1996. 13C NMR chemical shift prediction of sp3 carbon atoms in acy-
clic alkenes using neural networks. J. Chem. Inf. Comput. Sci.; 36, pp
587-598.

  [15] Schweitzer, R. C.; Small, G. W.; 1997. Automated Spectrum Simulation
Methods for Carbon-13 Nuclear Magnetic Resonance Spectroscopy
Based on Database Retrieval and Model-Building Strategies. J. Chem.
Inf. Comput. Sci.; 37, pp 249-257.

[16] Alawode, T. T.; Alawode, K. O.; 2014. Prediction of Substituent types
and positions on skeleton of Eudesmane-type sesquiterpenes using
Generalized regression Neural Network (GRNN).  African Journal of
Pure and Applied Chemistry.; 8(7), pp 102-109.

[17]Hannan, S. A.; Manza, R. R.; Ramteke, R. J.; 2010. Generalized regres-
sion neural network and radial basis function for heart disease diag-
nosis. International Journal of Computer Applications;7(13), pp 7-13.

[18] Oliveira, F. C.; Ferreira, M. J. P.; Nunez, C. V.; Rodriguez, G. V.;
Emerenciano, V. P.; 2000. 13 C NMR spectroscopy of eudesmane ses-
quiterpenes. Progress in Nuclear Magnetic Resonance Spectroscopy;
37, pp 1–45.

[19]Rodrigues, G. V.; Campos, I. P. A.; Emerenciano, V. P.; 1997. Applica-
tions of artificial intelligence to structure determination of organic
compounds**. Determination of groups attached to skeleton of natu-
ral products using 13 C nuclear magnetic resonance spectroscopy.
Spectroscopy pp 191-200.

[20] Elyashberg, M. E.; Blinov, K. A.; Williams, A. J.; Martirosian, E. R.;
Molodtsov,  S.  G.;  2002.  Application  of  a  new  expert  system  for  the
structure elucidation of natural products from their 1D and 2D NMR
data. Journal of Natural Products; 65, pp 693-703.

 [21] Schneider, G.; Wrede, P.; 1998. Artificial neural networks for comput-
er-based molecular design. Progress in Biophysics & Molecular Biology.  ;
70 pp 175-222.

847

IJSER




